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Abstract

Decision behavior changes over time, exhibiting temporal correlations and non-stationarity. Existing
Drift Diffusion Model (DDM) fitting methods rely on restrictive assumptions that decisions are
iIndependent and parameters are constant over time.

To address these limitations, we propose a computationally efficient method for estimating analytical
uncertainties in DDM parameters that are robust to unmodeled parameter variability and temporal
correlations between trials.

We apply this method to choice and reaction-time data from rats in a visual decision task, allowing us to
resolve non-stationary shitts in decision-making parameters across different timescales. This work
establishes a robust method for studying dynamic decision processes in naturalistic experiments by
relaxing assumptions of correct specitication and trial independence.

Introduction
A. Two-Alternative Forced Choice (2AFC) B. Psychometric Function C. Chronometric Function
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Figure 1: Choice and Reaction Times Change with Coherence.

(A) Rats decide whether random-dot motion moves left (=) or right (+) based on motion coherence, with
correct choices rewarded by access to water. (B/C) Simulated choice and reaction time functions of
motion coherence under the drift diffusion model (described below). (B) The proportion of rightward
choices increases with increasing rightward coherence. (C) Reaction times decrease with increasing
motion coherence magnitude.

A. Choice and Reaction Times Fit by Day B. Choice and Reaction Times Fit by Trial in Day
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Figure 2: Choice and Reaction Times Change Over Time. Dataset from (Reinagel 2013).

(A) and (B) show trials from a single rat from 79 days of fixed motion coherence. Error bars show +/-2
standard errors assuming J/id trials. Row 1 shows the number of trials in (A) per hour grouped by day

and in (B) per day grouped by trial in day. Row 2 shows choice accuracy and its autocorrelation, and
Row 3 shows reaction time and its autocorrelation.

Drift Diffusion Model (DDM)

Parameters of the DDM
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Figure 3: Choice and Reaction Times under the DDM.
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| The DDM models a decision as the accumulations of
Nnoisy evidence over time toward one of two (+/-)
choice boundaries. iIndicates an
initial bias toward one of the two choices. Non-
Decision Time (to) accounts for perceptual and motor
processes unrelated to evidence accumulation. Drift
Rate (v) reflects the average speed and direction of
evidence accumulation. Boundary Height (a)
represents the amount of evidence required to make
a decision.
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Point Estimation of DDM Parameters

A. Example Probability Density Function (Eq 4) B. Example Log-Likelihood Function (Eq 5)
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Figure 4: Maximum Likelihood Estimation. (A/B) Shows fitting of the DDM by maximum likelihood.

Validation by Simulation
A/B. Correctly Specified Model
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Notation:
Drift Diffusion Process

boundary height
1 Gaussian noise variance

|

(1) Z =a + Z er, €~ N(\l/AT, o AT)
t=1 \

drift rate
diffusion time index with resolution AT

Choice and Reaction Time for a Single Trial
upper boundary crossing
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lower boundary crossing

(2) RT =«

sign(RT) is the binary choice and |RT| is the reaction time

Choices and Reaction Times for Multiple Trials
joint choice and reaction time distribution
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(3) {RTf}f':le(RT:H:(a, to, V, 7))

trial index

Point Estimation:

Probability Density Function
(Feller, 1968; Navarro and Fuss, 2009)
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Log Likelihood Function

(5) 51(9 {RTI},) = = Zlogf(RTf:e)

average log-likelihood over n trials

Maximum Likelihood Estimator

(6) 6 = argmax@ (0;{RT;}_,)

Boundary Height
o

Objective: Quantify uncertainty of DDM parameters robust to
unmodeled temporal variability and correlations across trials.

Uncertainty Estimation of DDM Parameters

Covariance Estimation:

Hessian Matrix
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matrix of second derivatives of the log-likelihood

Fisher Information Matrix

n
l i=1 I
matrix of outer products of the score vectors for each trial i
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A. Convergence B. Uncertainty
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Figure 5: Hessian Matrix. (A) Shows convergence
$' | speed, (B) shows uncertainty/Fisher Information.

A\

@ :

AN

1 1 1 1
1
: -
1
; o
S
(6}

0.60 -0.50

0.05

-0.05 A1

135 1.40 1.45 0.20 040 -0.10 0

d \Y

L AN

0.02 0.025

C/D. Misspecified Parameter Variability
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Figure 6: Point and Uncertainty Estimation Performance.

Choice and reaction time data were simulated from equation (3), with n=1000 trials and b=900 repeats. (A/B)
IS a setting with constant parameters from trial-to-trial, while (C/D) adds autoregressive variability to the
boundary height (a). (A/C) shows point estimates as density curves relative to their true parameters (a=1.37,
) | v=0.

3, ) and (C/D) shows uncertainty estimates relative to their empirically true values.

n = 542 + 206 trials/day (79 days)

Data Analysis Results
A. DDM Parameters Fit by Day

B. DDM Parameters Fit by Trial in Day

n = 840 + 583 trials/day (20-trial bins, 79 days)
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Figure 7: DDM Parameters Change Over Time.
Fits to rat behavioral data from Figure 2. (A) and (B) show non-stationary shifts in decision-making

parameters relative to their uncertainties across ditferent timescales, where (A) shows changes over days
and (B) shows changes over trials within day. Error bars show +/- 2 standard errors calculated from
equation (12) for robustness to unmodeled temporal variability and autocorrelation. Rows 1-3 show

- absolute driit rate (v), and and their autocorrelations.

estimates of

Conclusions

- DDM parameters and their uncertainties can be reliably estimated despite the presence of
unmodeled temporal variability and correlations across trials.

» Applying this approach to rat decision-making data reveals temporal variations in the

underlying decision parameters across different timescales.

» The Hessian matrix enables efficient point estimates and uncertainty intervals for

Theoretical Properties:

_ _ o Consistent Estimation under Ergodicity

Sample Hessian Misspecification Robust ¥ # H (Hansen 2022b, Theorem 10.8) (Hansen 2022a, Theorem 14.9)
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= 11) Vur = A
(9) Vsu=H (11) Vwmr =H, JoH, (13) § - 6y as n — oo
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Outer Product Autocorrelation Robust

N ~ R o R Asymptotic Normality under Strong Mixing
(10) Vop = 9 (12) VAR = ( Z V\V|I—J 5 S ) 7—[_1 (Hansen 2022b, Theorem 10.16) (Hansen 2022a, Theorem 14.15)

I,j=1 .
weights that taper long-range autocorrelations (14) v'n(0 — 6o) 7 N(0,V)asn— oo

thousands of trials, improving computation speed compared to existing methods.
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