

Quantifying uncertainty of parameter estimates when applying drift diffusion models to temporally-dependent decision data

UC San Diego

Gabriel Riegner¹, Pamela Reinagel², Armin Schwartzman¹

¹Halicioğlu Data Science Institute, UCSD | ²Department of Neurobiology, UCSD

Abstract

Decision behavior changes over time, exhibiting temporal correlations and non-stationarity. Existing Drift Diffusion Model (DDM) fitting methods rely on restrictive assumptions that decisions are independent and parameters are constant over time.

To address these limitations, we propose a computationally efficient method for estimating analytical uncertainties in DDM parameters that are robust to unmodeled parameter variability and temporal correlations between trials.

We apply this method to choice and reaction-time data from rats in a visual decision task, allowing us to resolve non-stationary shifts in decision-making parameters across different timescales. This work establishes a robust method for studying dynamic decision processes in naturalistic experiments by relaxing assumptions of correct specification and trial independence.

Introduction

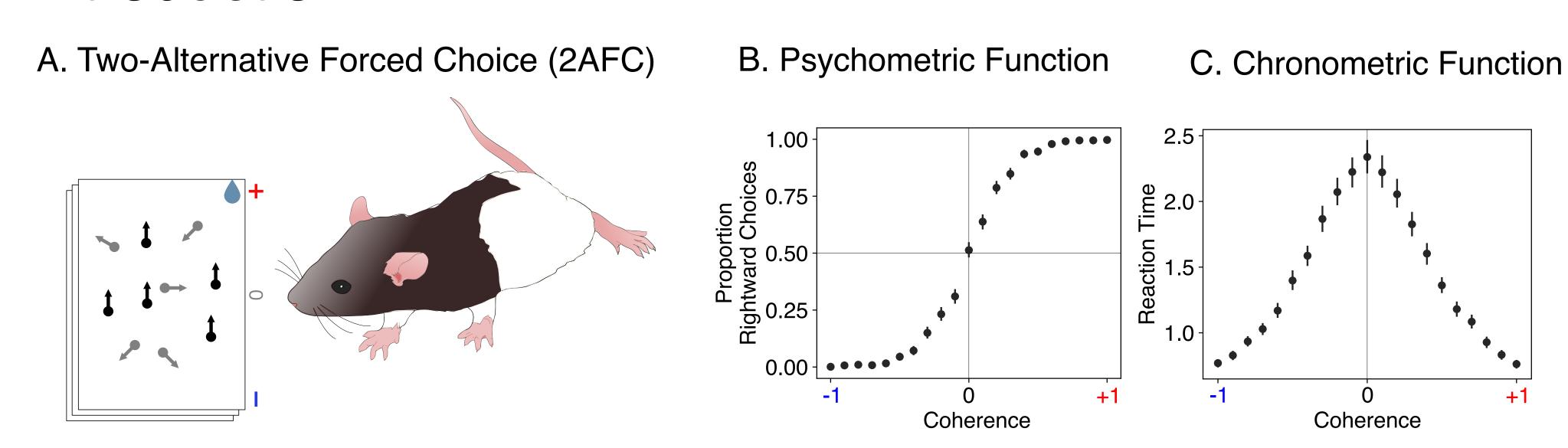


Figure 1: Choice and Reaction Times Change with Coherence.

(A) Rats decide whether random-dot motion moves left (-) or right (+) based on motion coherence, with correct choices rewarded by access to water. (B/C) Simulated choice and reaction time functions of motion coherence under the drift diffusion model (described below). (B) The proportion of rightward choices increases with increasing rightward coherence. (C) Reaction times decrease with increasing motion coherence magnitude.

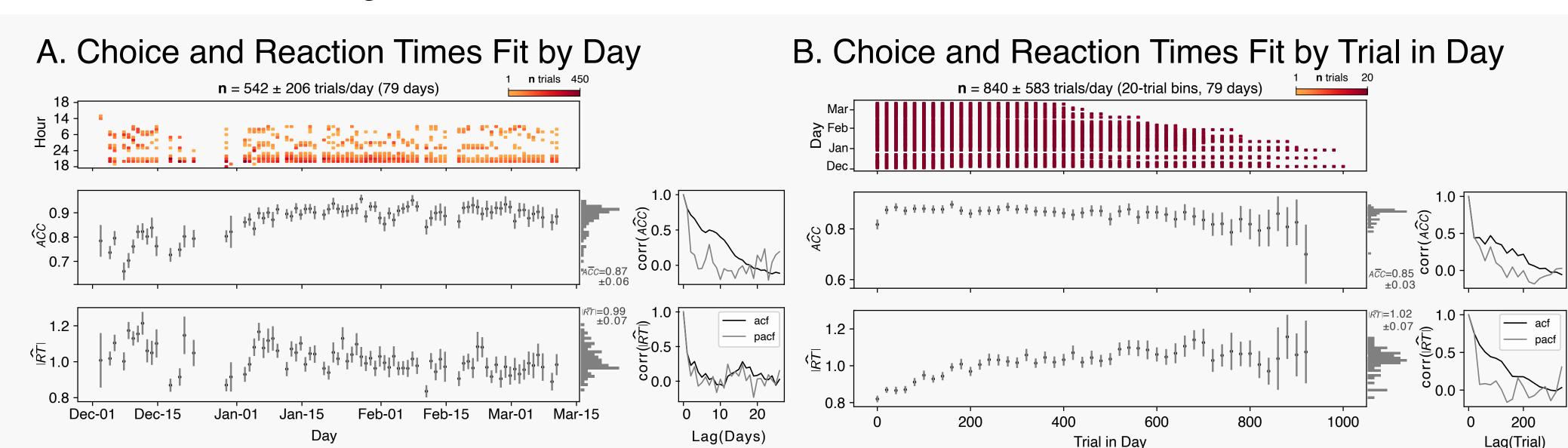


Figure 2: Choice and Reaction Times Change Over Time. Dataset from (Reinagel 2013).

(A) and (B) show trials from a single rat from 79 days of fixed motion coherence. Error bars show +/-2 ståndard errors assuming iid trials. Row 1 shows the number of trials in (A) per hour grouped by day and in (B) per day grouped by trial in day. Row 2 shows choice accuracy and its autocorrelation, and Row 3 shows reaction time and its autocorrelation.

Drift Diffusion Model (DDM)

Parameters of the DDM

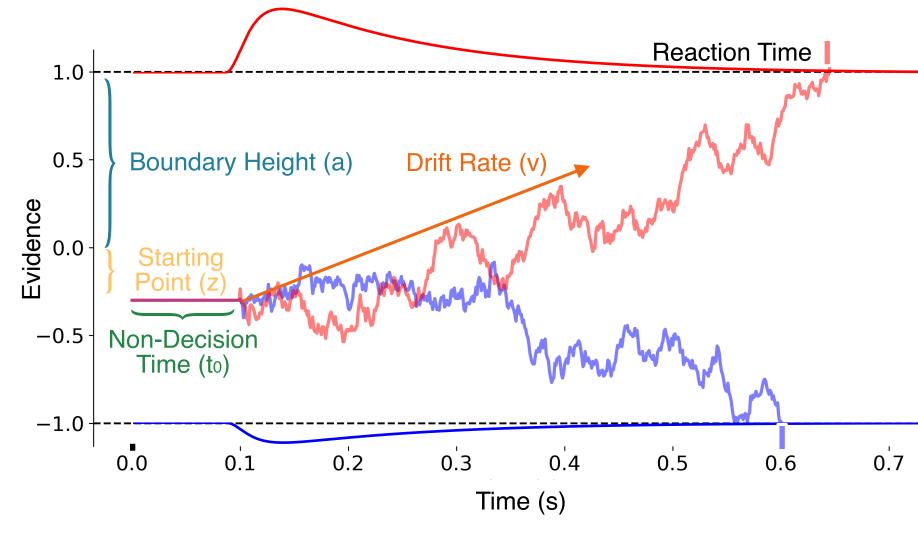


Figure 3: Choice and Reaction Times under the DDM. The DDM models a decision as the accumulations of noisy evidence over time toward one of two (+/-) choice boundaries. initial bias toward one of the two choices. Non-Decision Time (to) accounts for perceptual and motor processes unrelated to evidence accumulation. Drif Rate (v) reflects the average speed and direction of evidence accumulation. Boundary Height (a) represents the amount of evidence required to make a decision.

Point Estimation of DDM Parameters

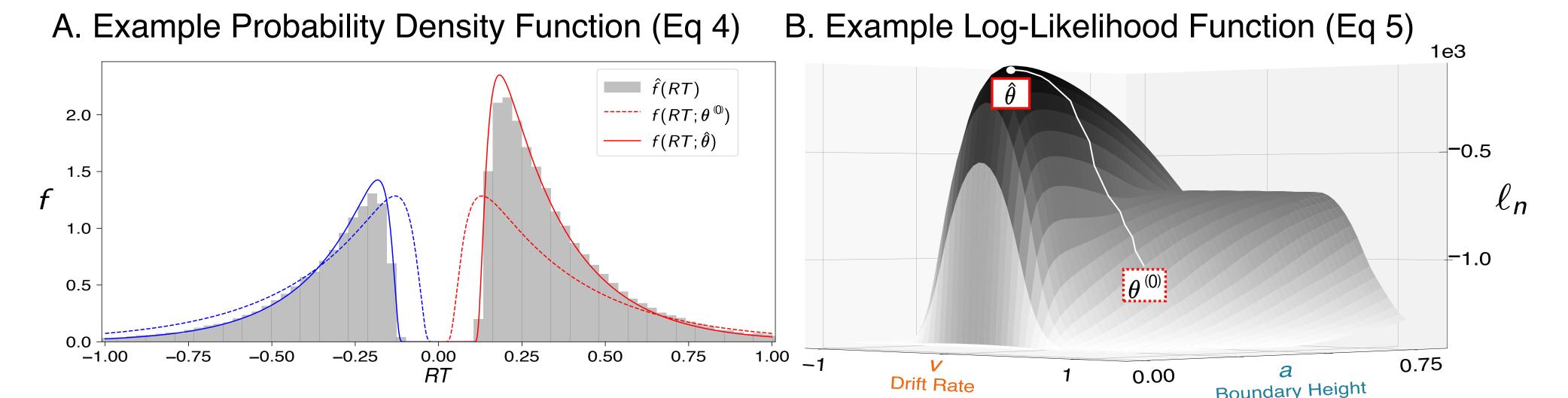
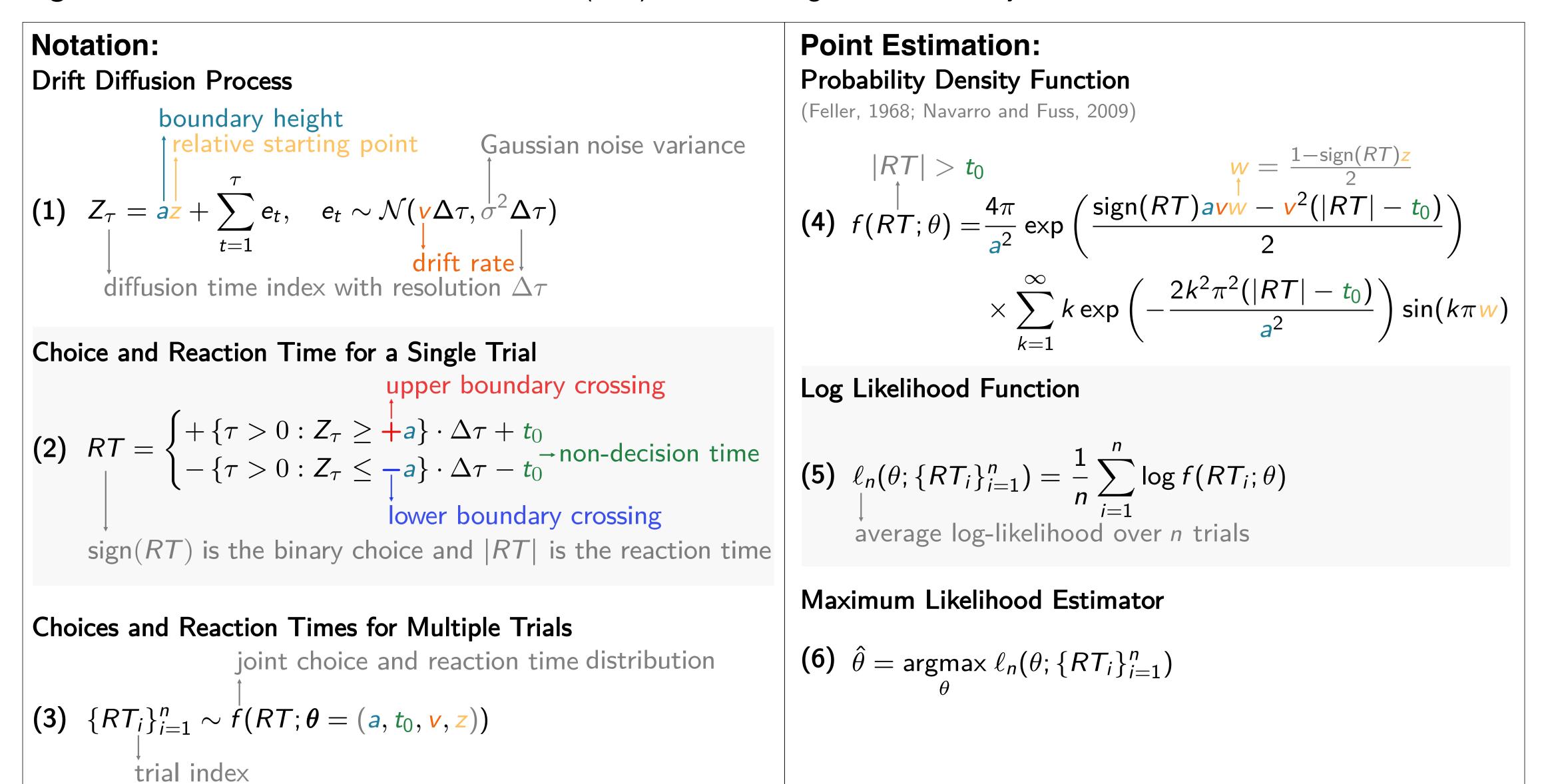


Figure 4: Maximum Likelihood Estimation. (A/B) Shows fitting of the DDM by maximum likelihood.



Objective: Quantify uncertainty of DDM parameters robust to unmodeled temporal variability and correlations across trials.

Uncertainty Estimation of DDM Parameters

Covariance Estimation: Hessian Matrix

(7) $\widehat{\mathcal{H}} = -\frac{1}{n} \sum_{i=1}^{n} \frac{\partial^2}{\partial \theta \partial \theta'} \log f(RT_i; \widehat{\theta}) = -\frac{1}{n} \frac{\partial^2}{\partial \theta \partial \theta'} \ell_n(\widehat{\theta})$

Fisher Information Matrix

(8) $\widehat{\mathscr{J}} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{\partial}{\partial \theta} \log f(RT_i; \hat{\theta}) \right) \left(\frac{\partial}{\partial \theta} \log f(RT_i; \hat{\theta}) \right)' = \frac{1}{n} \sum_{i=1}^{n} \hat{S}_i \hat{S}_i'$ matrix of outer products of the score vectors for each trial i

Sample Hessian

 $(9) \quad \widehat{V}_{\mathsf{SH}} = \widehat{\mathcal{H}}^{-1}$

(11) $\widehat{V}_{\mathsf{MR}} = \widehat{\mathcal{H}}_{ heta}^{-1} \widehat{\mathscr{I}}_{ heta} \widehat{\mathcal{H}}_{ heta}^{-1}$

Outer Product

(10) $\widehat{V}_{OP} = \widehat{\mathscr{I}}^{-1}$

Misspecification Robust $\mathscr{I} \neq \mathcal{H}$ **Autocorrelation Robust**

(12) $\widehat{V}_{AR} = \widehat{\mathcal{H}}^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} w_{|i-j|} \hat{S}_i \hat{S}_j' \right) \widehat{\mathcal{H}}^{-1}$ weights that taper long-range autocorrelations

B. Uncertainty

Figure 5: Hessian Matrix. (A) Shows convergence speed, (B) shows uncertainty/Fisher Information

Theoretical Properties: Consistent Estimation under *Ergodicity* (13) $\hat{\theta} \rightarrow \theta_0$ as $n \rightarrow \infty$

under Strong Mixing (Hansen 2022b, Theorem 10.16) (Hansen 2022a, Theorem 14.15)

(14) $\sqrt{n}(\hat{\theta}-\theta_0) \rightarrow \mathcal{N}(0,V)$ as $n \rightarrow \infty$

Validation by Simulation

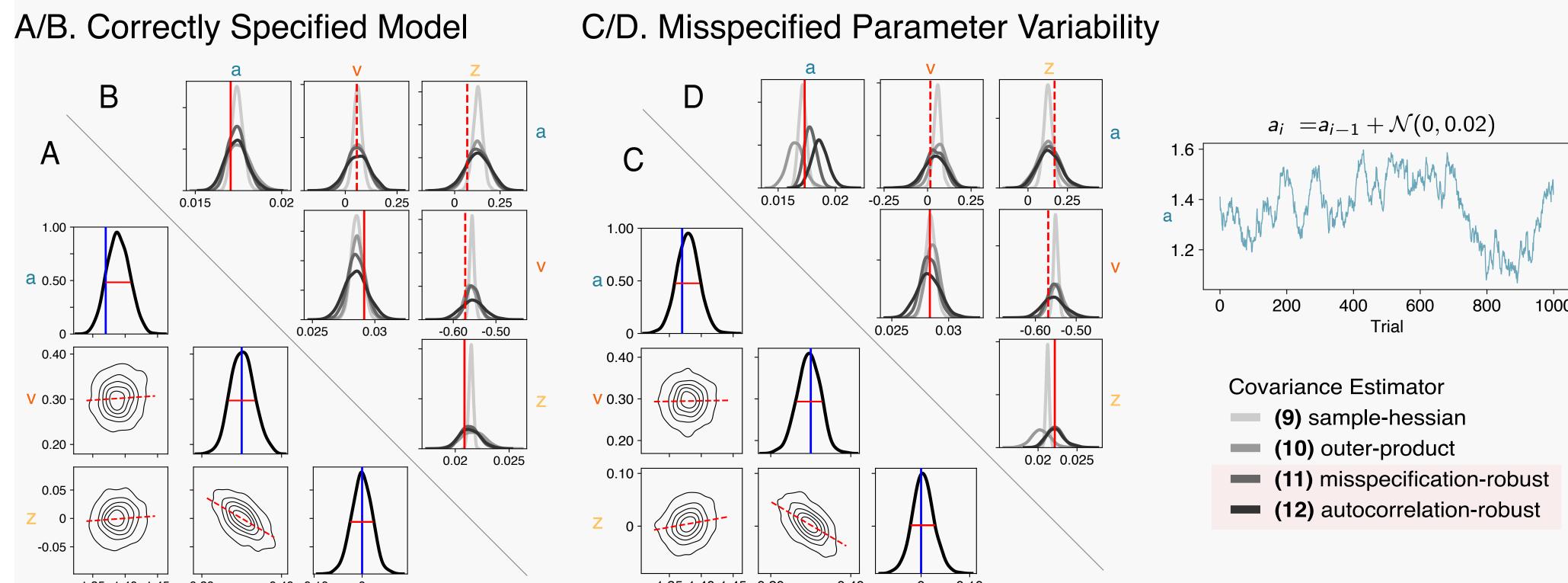


Figure 6: Point and Uncertainty Estimation Performance.

Choice and reaction time data were simulated from equation (3), with n=1000 trials and b=900 repeats. (A/B) is a setting with constant parameters from trial-to-trial, while (C/D) adds autoregressive variability to the . (A/C) shows point estimates as density curves relative to their true parameters (a=1.37,)) and (C/D) shows uncertainty estimates relative to their empirically true values.

Data Analysis Results

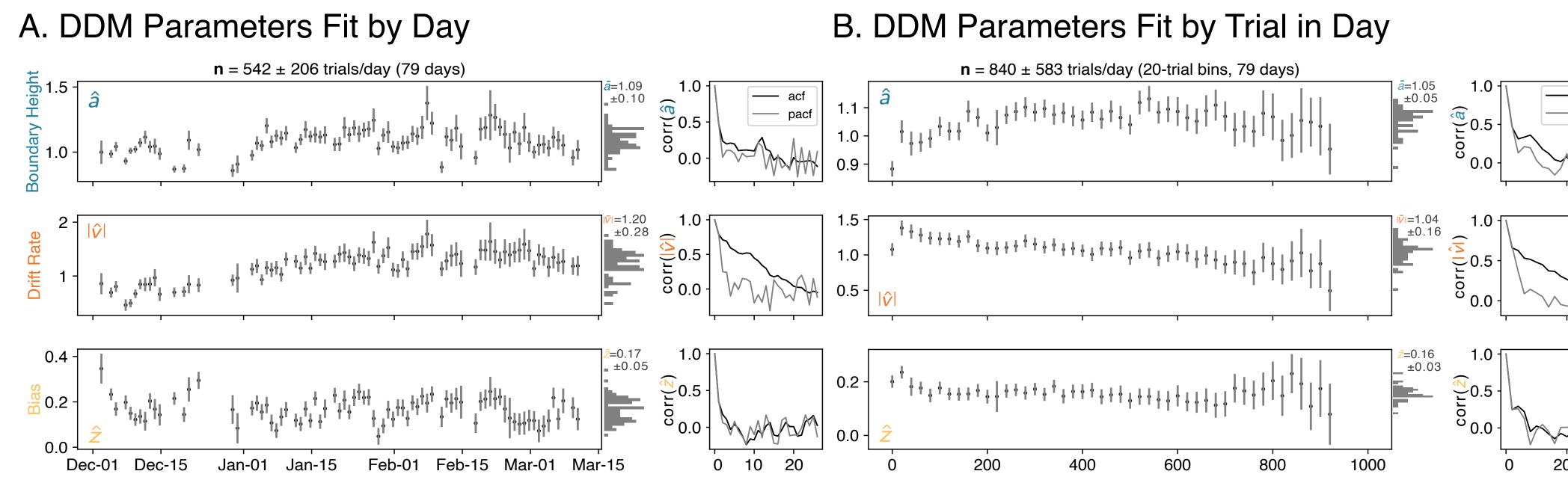


Figure 7: DDM Parameters Change Over Time.

Fits to rat behavioral data from Figure 2. (A) and (B) show non-stationary shifts in decision-making parameters relative to their uncertainties àcross different timescales, where (A) shows changes over days and (B) shows changes over trials within day. Error bars show +/- 2 standard errors calculated from equatión (12) for robustness to unmodeled temporal variability and autocorrelation. Rows 1-3 show estimates of boundary height (a), absolute drift rate (v), and starting bias z) and their autocorrelations.

Conclusions

- DDM parameters and their uncertainties can be reliably estimated despite the presence of unmodeled temporal variability and correlations across trials.
- Applying this approach to rat decision-making data reveals temporal variations in the underlying decision parameters across different timescales.
- The Hessian matrix enables efficient point estimates and uncertainty intervals for thousands of trials, improving computation speed compared to existing methods.

References

Navarro, D. J., & Fuss, I. G. (2009). Fast and accurate calculations for first-passage times in Wiener diffusion models. Journal of Mathematical Psychology, 53(4), 222–230.

Reinagel, P. (2013). Speed and Accuracy of Visual Motion Discrimination by Rats. *PLoS ONE*, 8(6), e68505.

Link to Poster

gariegner@ucsd.edu